A modified bracket-positioning gauge

Rohan Subhash Hattarki, BDS, MDS¹
Shantesh Malagi, BDS, MDS²

Various techniques for improving bracket positioning with different kinds of instruments have been described. This article describes the use of a modified bracket-positioning gauge for accurate placement of brackets during orthodontic bonding. ORTHODONTICS (CHIC) 2011;12:268–269.

Key words: bracket placement gauge, bracket positioning, orthodontic bonding

A number of techniques for improving bracket positioning have been described.¹⁻⁴ Accurate bracket placement is essential for an appropriate expression of tip and torque of any given appliance system. To precisely position the brackets during bonding, it is necessary to note both vertical and horizontal reference points.

Most bracket-positioning gauges are useful in improving the vertical position (occlusogingival) of the bracket during bonding. To ideally position the bracket in the horizontal plane (along the long axis of the tooth), we have modified the bracket-positioning gauge.

FABRICATION OF THE GAUGE

The gauge was fabricated in four steps:

1. The metal ramp that fits into the bracket slot is disengaged from the gauge by removing the screw (Fig 1).
2. A 10-mm–long, 0.8-mm stainless steel wire with a ball end is taken. At 8 mm, the wire is bent 90 degrees (Fig 2).
3. The free end of the wire is made into a hook; through this hook, the screw of the gauge is placed (Fig 3).
4. The metal ramp is then secured onto the gauge with the screw-wire assembly in such a way that the wire is in the center of the metal ramp (Fig 4).
This modified bracket-positioning gauge, with an extending vertical stainless steel wire, can be used to accurately position the bracket along the long axis of the tooth at the time of bonding (Fig 5). The gauge should be used in conjunction with a panoramic radiograph.

This gauge has two advantages. One, the simple design helps the practitioner position the bracket accurately in both the vertical and horizontal reference planes. Two, it reduces the need for bracket repositioning or second-order bends in the wire during the finishing stages of the treatment.

REFERENCES